Blood gas Workshop

VTA 2019

Acid

- A substance that dissociates in H₂0 → H⁺
- HCl → H⁺ + Cl⁻ (complete dissociation)
- Acetic acid H⁺ + Acetate

Base

Substance that accepts a H⁺

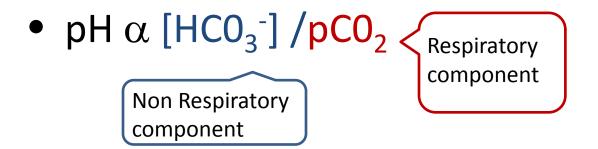
Buffer

Mixture of a weak acid and its conjugate base

Bicarbonate buffer system (ECF)

- H₂CO₃ / HCO₃⁻
- Strong acid: $HCO_3^- + H^+ \longrightarrow H_2CO_3$
- Strong Base: $H_2CO_3 + OH^- \rightarrow H_2O$
- pH measure of [H⁺] or Log 1/ [H⁺]
- H/H equation relates the pH of a buffer to the concentration of its buffer acid and base

```
pH = pKa + log [base] / [acid]
```


• pH = pKa +
$$log [HCO_3^-] / [H_2CO_3]$$

• pH = 6.1 + $log 20/1$
= 7.4

As long as the ratio 20:1 is kept, irrespective of concentrations, pH is normal

•
$$H_2CO_3$$
 \rightarrow $H_2O + CO_2$
• H_2CO_3 α \rightarrow pCO_2 oversimplification

pH
$$\alpha$$
 [HCO₃-] /pCO₂

Components of acid base status

- If disease causes changes in one component, the other component responds in an attempt to correct the ratio of 20: 1
- See if you can work out the direction of the compensatory component should one component change

Equations

- Metabolic acidosis
- Metabolic alkalosis
- Respiratory acidosis
- Respiratory alkalosis

Delta ratio – Increase in AG / Decrease in HC03

```
AG calculated- (12) / 24 - (HC03 measured)
```

Interpretation

```
<0.4 – Normal AG Met Acid
```

0.4 - 08 - Mixed Normal AG, High Metabolic Met Acid

```
1-2 - High AG met Acid
```

> 2 - HC03 is high to start with

Case 1

pH 7.08 PaCO2 18,8 mmHg PaO2 100 mmHg HC03 5,4

Na 136 mmol/l Cl 102 mmol/l FiO2 0.3

Case 2

pH 7.48
PaCO2 47 mmHg
PaO2 68 mmHg
HC03 34
FiO2 0.4

K = 2.8

Metabolic Alkalosis

- High pH
- HCO₃ excess
- Compensation?

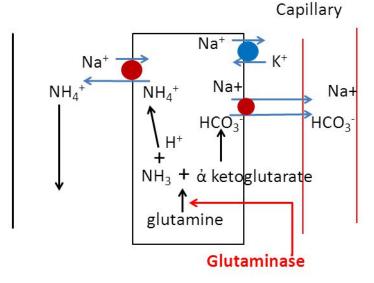
```
pH \alpha [HCO_3^-]/pCO_2
```

Causes of Metabolic alkalosis

- H⁺ loss
 - GIT:
 - Vommiting / NG suction
 - Renal:
 - Diuretics
 - Mineralocorticoid excess
 - Low PTH/
 - Post chronic hypercapnea
 - Hypokalemia
 - Transcellular shift/ Loss

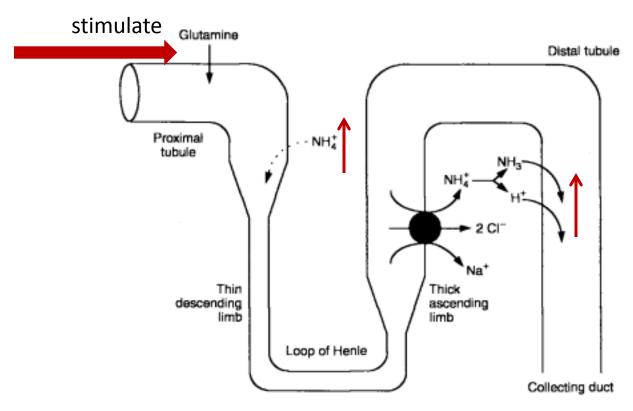
- HCO3 excess
 - NaHCO3 admin
 - Massive transfusion

Contraction alkalosis


Maintenance of Metabolic alkalosis

Hypovolemia

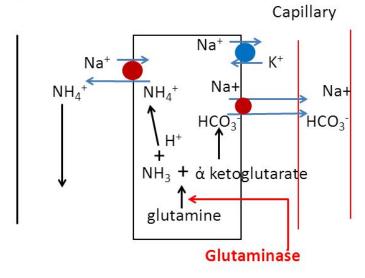
Proximal Tubule in H⁺ Homeostasis


Low ECV

Increased Na reabsorption Increased NH₄⁺ excretion HCO3 reabsorbtion Secretion of NH₄⁺ by proximal tubular cells

Maintenance of Metabolic alkalosis

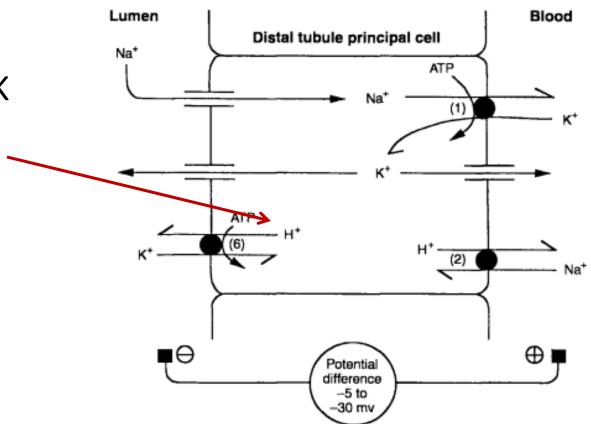
Hypokalemia


Management

1. Saline responsive

Re-expand IVV and break cycle

Proximal Tubule in H⁺ Homeostasis


Secretion of NH₄⁺ by proximal tubular cells

Management

2. Saline resistant

- Low K driving
- Plan- Correct K

Case 3

pH 7.50 PaCO2 41 mmHg PaO2 145 mmHg HC03 34 FiO2 0.4

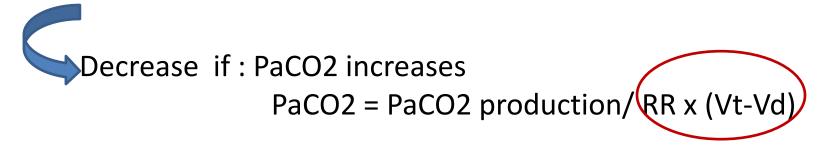
K = 2.8

Causes:

- 1.vomiting in pregnant patient,
- 2.diuretics or vomiting in patient with chronic respiratory alkalosis typical of cirrhosis,
- 3. postcardiac arrest (hyperventilation, bicarbonate therapy and conversion of lactate to bicarbonate

Case 4

- Elderly COPD
- pH 7.55
- PaCO2 53 mmHg
- PaO2 63 mmHg
- Bicarbonate 48 mmol/l
- FiO2 0.21


Alveolar arterial gradient

Hypoxemia PaO2 < 80 mmHg

Due to imbalance between:

Pulmonary ventilation and Pulmonary capillary blood flow

Alveolar O2 = FiO2 x(Atm Pressure - H2O) - PaCO2/RQ

Case 5

- pH 7.44
- PaCO2 63 mmHg
- PaO2 52 mmHg
- Bicarbonate 42 mmol/l
- FiO2 0.28

A-aDO2

- A-a DO2 in hypoxemia
 - 1. High:
 - Diffusion/shunt/dead space
 - 2. Normal: Altitude/Fi02 low or PaCO2 high

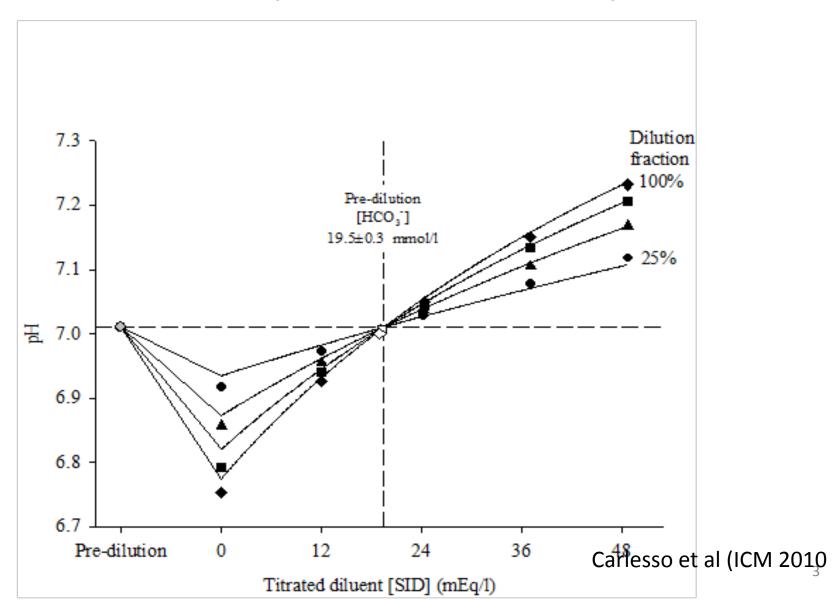
Alveolar O2 = FiO2 x(Atm Pressure - H2O) - PaCO2/RQ

Resp depressants/ sedatives/ms relaxants/NM ds/Skeletal abnormalities

Paeds BASIC ICU Course

• Email:

paedsbasicjhb@gmail.com

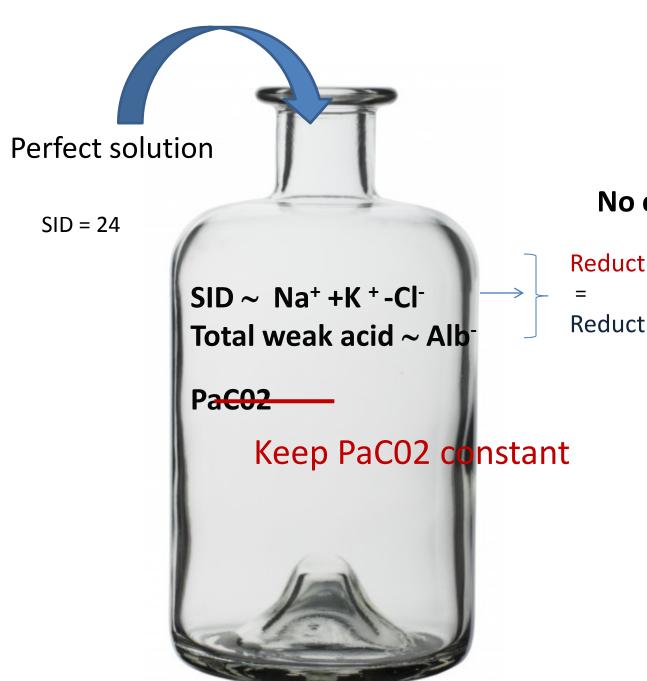

Is Balanced really the solution?

Shahed Omar
University of Witwatersrand/CHBAH

What is balanced?

	Content	Plasma	Sodium chloride 0.9%*	Lactated Ringer's (USP)	Ringer's acetate	Alternative balanced solutions for resuscitation**	Bara'lyte
SI	D (Na+K-Cl)	40	0	28	27	50	52
	Na ⁺ (mmol/l)	135–145	154	130	130	140	142
	Cl ⁻ (mmol/l)	95–105	154	109	112	98	99
	[Na+]:[Cl-] ratio	1.28–1.45:1	1:1	1.19:1	1.16:1	1.43:1	1.43:1
	K⁺ (mmol/l)	3.5–5.3	*	4	5	5	3.6
	HCO ₃ - /			28	27	27 (acetate)	3.0
	Bicarbonate	24–32	0	(lactate)	(acetate)	23 (gluconate)	49
	Ca ² + (mmol/l)	2.2–2.6	0	1.4	1	0	0
	Mg ² + (mmol/l)	0.8–1.2	0	0	1	1.5	2.7
	Glucose (mmol/ l)	3.5–5.5	0	0	0	0	0
	рН	7.35–7.45	4.5–7.0	6–7.5	6–8	4.0-8.0	1
	Osmolarity (mOsm/l)	275–295	308	273	276	295	296

Balanced- depends on what you want

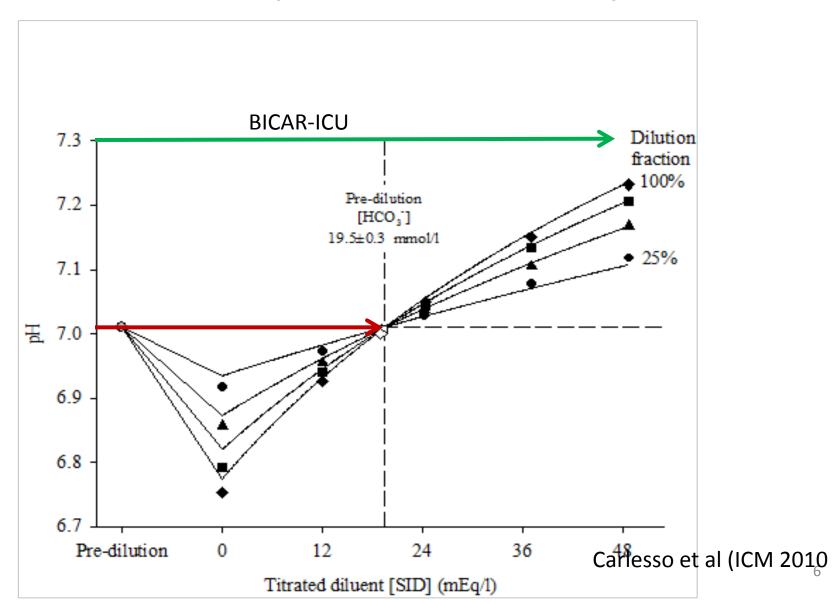


Respiration Physiology (1978) 33, 9-26 © Elsevier/North-Holland Biomedical Press

INDEPENDENT AND DEPENDENT VARIABLES OF ACID-BASE CONTROL¹

PETER A. STEWART

Physiology/Biophysics, Brown University. Providence, Rhode Island 02912, U.S.A.



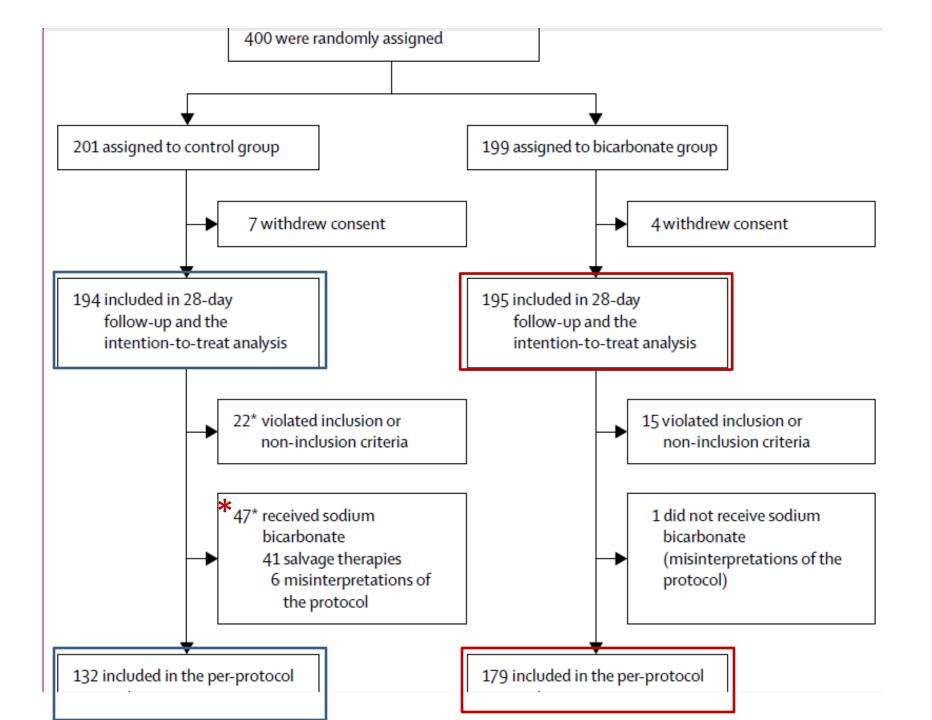
No effect on pH

Reduction the SID - **1**

Reduction the Total weak acid- ↓H+

Balanced- depends on what you want

Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial

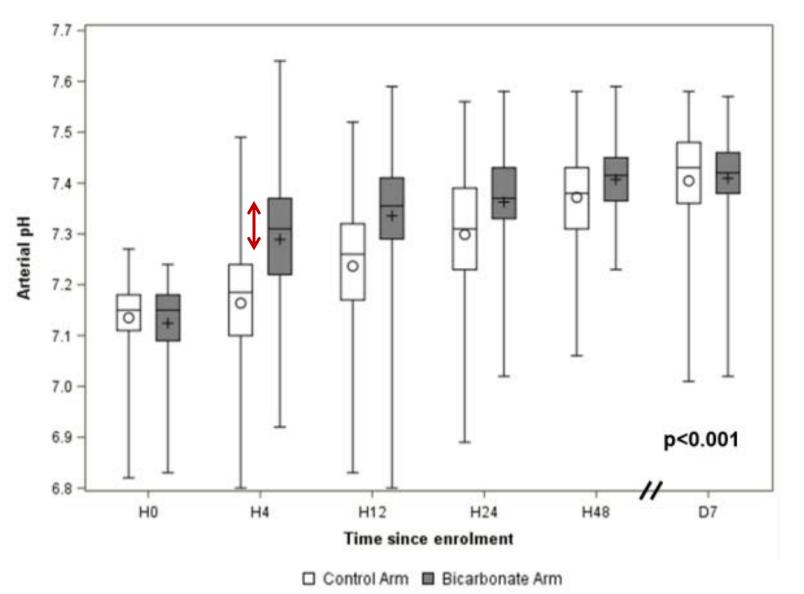

Samir Jaber, Catherine Paugam, Emmanuel Futier, Jean-Yves Lefrant, Sigismond Lasocki, Thomas Lescot, Julien Pottecher, Alexandre Demoule, Martine Ferrandière, Karim Asehnoune, Jean Dellamonica, Lionel Velly, Paër-Sélim Abback, Audrey de Jong, Vincent Brunot, Fouad Belafia, Antoine Roquilly, Gérald Chanques, Laurent Muller, Jean-Michel Constantin, Helena Bertet, Kada Klouche, Nicolas Molinari, Boris Jung, for the BICAR-ICU Study Group*

Hypothesized

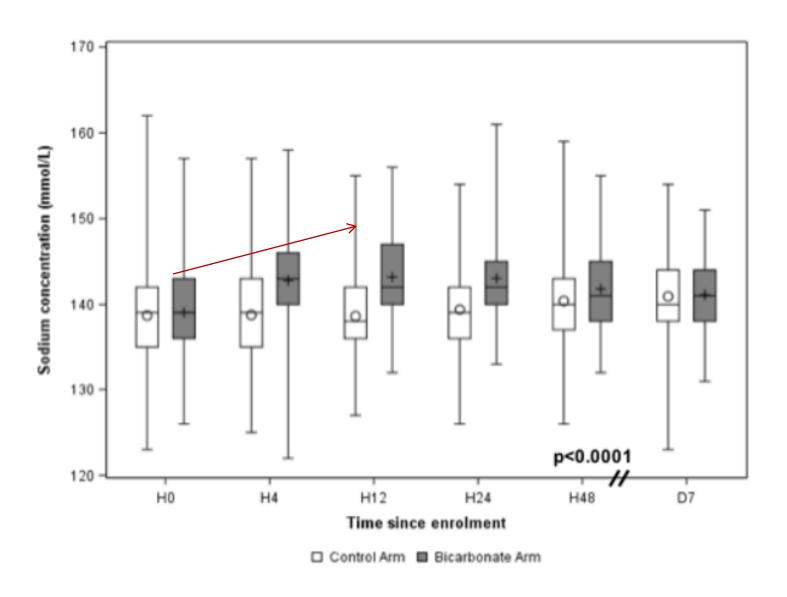
Early NaHC03 infusion vs no NaHC03 would result the composite of fewer deaths (D28) and SOFA 1by D7

- Inclusion (All)
 - ≥ 18y
 - Within 48h of ICU admission
 - pH≤ 7.2 and PaC02 ≤ 45
 - SOFA ≥ 4 or Lac ≥ 2
- Exclusion
 - Resp Acidosis/ HC03 loss from GIT or kidney
 - -CKD-4
 - Ketoacidosis
 - NaHC03 Rx or RRT within 24 of screening

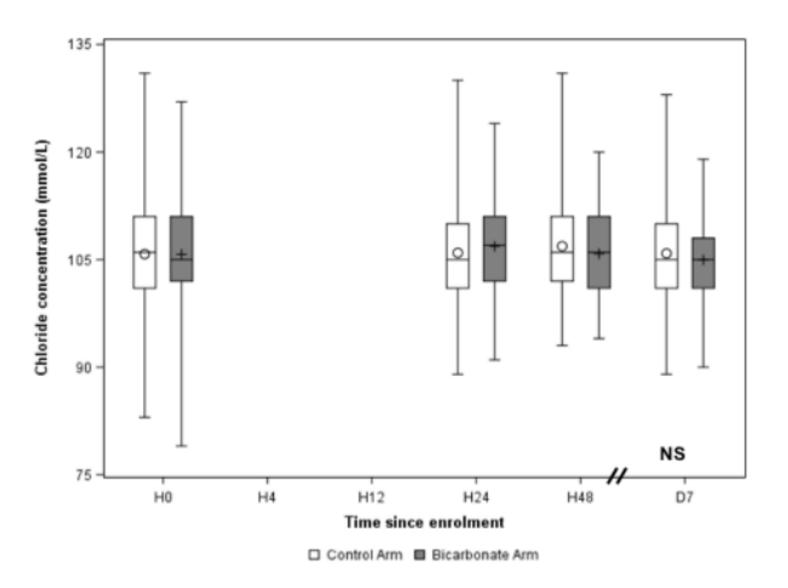
942 patients were assessed for eligibility 542 excluded 109 already received sodium bicarbonate 87 were in terminal decline 76 had treatment limitation 69 had chronic renal failure 47 had immediate RRT indication 41 had ketoacidosis 37 had digestive loss of sodium bicarbonate 21 were eligible but not enrolled 18 were included in another clinical study 13 had hyperkalaemia with heart signs 13 declined to participate 11 were under guardianship protection 400 were randomly assigned

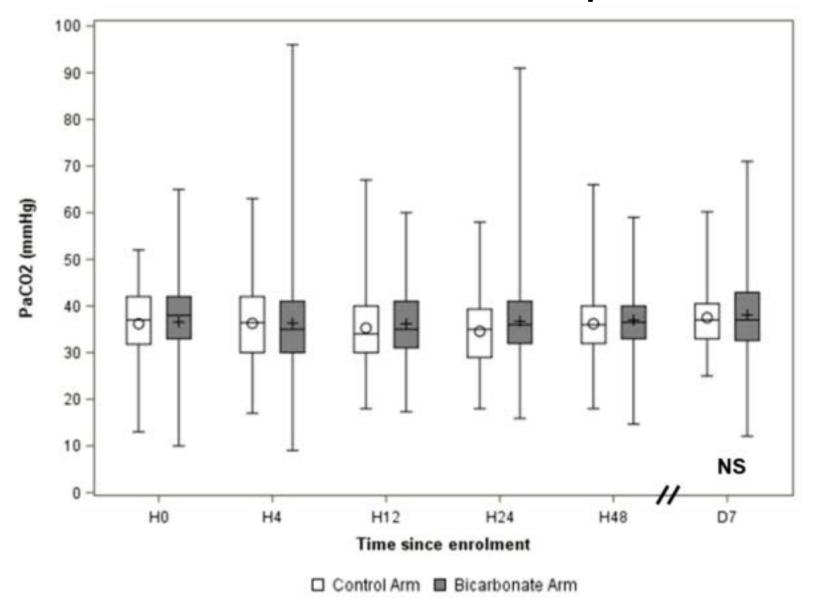

Other secondary outcomes		Control	Bicarb
Overall population (n=389)			
Cumulative fluid intake from enrolment to 24 h (mL)		3500 (1500–5250)	3350 (1800–5250)
Cumulative sodium bicarbonate volume intake from enroln	ulative sodium bicarbonate volume intake from enrolment to 24 h (mL)		
Cumulative sodium bicarbonate intake from enrolment to 2	lative sodium bicarbonate intake from enrolment to 24 h (mmol)		
Cumulative fluid intake from 24 h to 48 h (mL)		1050 (0-2000)	1000 (0-2250)
	Total Fluid 48	h: 4550	4350
	Na mmol/l	130	194
	Cl	110	91
	K	4	3.3

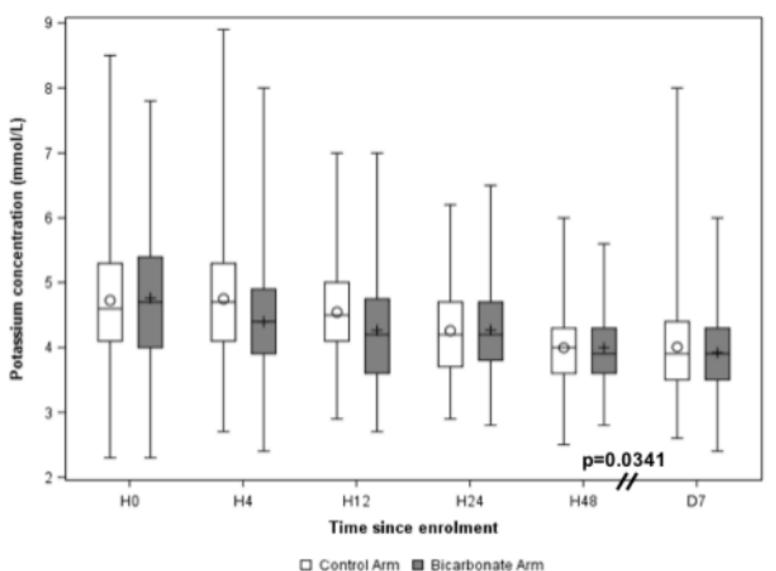
Est SID


24

~ 100


So, what happened to pH?

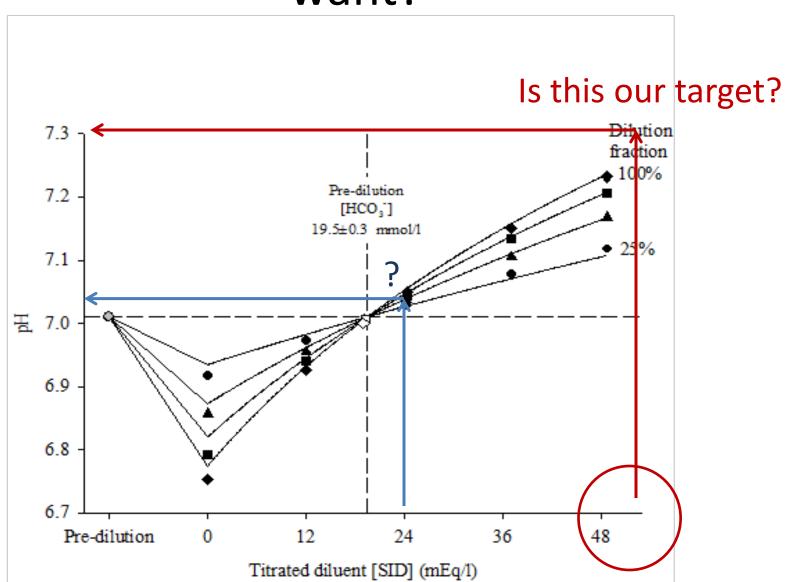

You can guess what happened to Na


Chloride

What about PaC02 component?

Benefits of this strategy

Secondary outcomes


Renal replacement therapy

Overall population (n=389)

Use of renal replacement therapy during ICU stay	100 (52%)	*	68 (35%)
Time from enrolment to initiation of renal replacement therapy (h)	7 (3–18)	*	19 (7-82)
Renal replacement therapy-free days during ICU stay	8 (0–28)	*	19 (1–28)
Renal replacement therapy-free days during ICU stay in survivors	28 (25–28)		28 (25–28)
Dependence on dialysis at ICU discharge	11/32 (34%)		7/32 (22%)
Patients with AKIN scores of 2–3* (n=182)			
Use of renal replacement therapy during ICU stay	66/90 (73%)	*	47/92 (51%)
Time from enrolment to initiation of renal replacement therapy (h)	7 (3–17)	*	20 (8-82)
Renal replacement therapy-free days during ICU stay	1 (0-22)	*	10 (1-28)
Renal replacement therapy-free days during ICU stay in survivors	24 (22–28)		28 (19–28)
Dependence on dialysis at ICU discharge	10/21 (48%)	*	5/25 (20%)

	Control group (n=194)	Bicarbonate gro	up (n=195)
Primary outcome			Sig p
Overall population (n=389)			
Composite outcome	138 (71%)	128 (66%)	
Day 28 mortality	104 (54%)	87 (45%)	
At least one organ failure at day 7	134 (69%)	121 (62%)	
Patients with AKIN scores of 2–3* (n=182)			
Composite outcome	74/90 (82%)	64/92 (70%)	0.0462
Day 28 mortality	57/90 (63%)	42/92 (46%)	0.0166
At least one organ failure at day 7	74/90 (82%)	61/92 (66%)	0.0142

So back to our question - what you want?

	Control group (n=194)	Bicarbonate group (n=195)
Age		
Median age (years)	65 (55–75)	66 (55–75)
≥65	100 (52%)	104 (53%)
<65	94 (48%)	104 (47%)
Sex		
Men	123 (63%)	115 (59%)
Women	71 (37%)	80 (41%)
Body-mass index (kg/m²)	27 (23–30)	26 (23–29)
Simplified Acute Physiology Score II*	60 (48-73)	59 (49-73)
Sepsis	115 (59%)	123 (63%)
AKIN status¶		
AKIN 0-1	104 (54%)	103 (53%)

90 (46%)

92 (47%)

AKIN 2-3

	Control group (n=194)	Bicarbonate group (n=195)
(Continued from previous page)		
Physiological support†		
Invasive mechanical ventilation	160 (82%)	164 (84%)
Vasopressor support	156 (80%)	154 (79%)
Laboratory results		
Arterial pH	7-15 (7-11-7-18)	7.15 (7.09–7.18)
PaO ₂ -to-FiO ₂ ratio (mm Hg)	229 (142–355)	264 (144-403)
PaCO ₂ (mm Hg)	37 (32–42)	38 (33-42)
Serum bicarbonate (mmol/L)	13 (10–15)	13 (10–15)
Serum lactate (mmol/L)	5.3 (3.4-9.0)	6.3 (3.6–9.7)
Serum lactate ≥2 mmol/L at enrolment	152 (78%)	168 (86%)
Serum creatinine (mg/dL)	1.76 (1.21-2.48)	1.67 (1.11-2.33)

What does the data indicate?

Meta-analysis of high- *versus* low-chloride content in perioperative and critical care fluid resuscitation

M. L. Krajewski¹, K. Raghunathan^{1,2}, S. M. Paluszkiewicz³, C. R. Schermer⁴ and A. D. Shaw⁵

¹Department of Anesthesiology, Duke University Medical Center, and ²Anesthesiology Service, Durham VA Medical Center, Durham, North Carolina, ³Boston Strategic Partners, Boston, Massachusetts, ⁴Baxter Healthcare Corporation, Deerfield, Illinois, and ⁵Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Correspondence to: Professor A. D. Shaw, Division of Cardiothoracic Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232–8274, USA (e-mail: andrew.shaw@vanderbilt.edu)

2014

Background: The objective of this systematic review and meta-analysis was to assess the relationship between the chloride content of intravenous resuscitation fluids and patient outcomes in the perioperative or intensive care setting.

21 studies (6253 pt)

15 RCT, 5 Observational and 1 controlled clinical trial

Mortality

	Mor	tality		_					
Reference	High-chloride	Low-chloride	Weight (%)	Risk ratio			Risk ratio		
RCTs									
Mahajan et al.47	1 of 11	0 of 11	0.3	3.00 (0.14, 66.53)					
Waters et al.14	1 of 33	1 of 33	0.7	1.00 (0.07, 15.33)					
Young et al.54	8 of 33	7 of 32	4.6	1.11 (0.45, 2.70)				-	
Subtotal	10 of 77	8 of 76	5.6	1.21 (0.53, 2.72)					
Heterogeneity: χ ² =	0·38, 2 d.f., P = 0	$\cdot 82; I^2 = 0\%$							
Test for overall effe	ct: $Z = 0.45$, $P = 0$	65							
CCTs									
Yunos et al. ^{26,55}	112 of 760	102 of 773	66-0	1.12 (0.87, 1.43)			-		
Subtotal	112 of 760	102 of 773	66.0	1.12 (0.87, 1.43)					
Heterogeneity: not	applicable						ľ		
Test for overall effe	ct: $Z = 0.87$, $P = 0.3$	38							
Observational/retrospe	ective studies								
Berger et al.41	4 of 20	3 of 20	2.0	1.33 (0.34, 5.21)		_			
Shaw et al.27	93 of 2778	27 of 926	26.4	1.15 (0.75, 1.75)			- -		
Subtotal	97 of 2798	30 of 946	28.4	1.16 (0.78, 1.74)					
Heterogeneity: χ ² =	0.04. 1 d.f P = 0	$\cdot 84$: $I^2 = 0\%$					Ť		
Test for overall effe		-				Г		1	
Total	219 of 3635	140 of 1795	100-0	1.13 (0.92, 1.39)					
				(2 22, . 00)			•		
Heterogeneity: $\chi^2 = 0$. Test for overall effect: λ		, 1- = 0%							
Test for subgroup diffe	,	0 df D = 0.00 2	_ 0%		0.05	0.2	1	5	20
rest for subgroup diffe	Terroes. $\chi^- = 0.05$,	z u.i., F = 0.98; F	= 0%		Favou	rs high ch	loride Favou	irs low chlo	oride

AKI/renal failure					
Reference H	High-chloride	Low-chloride	Weight (%)	Risk ratio	Risk ratio
RCTs					
Hadimioglu et al.12	3 of 30	3 of 60	2.4	2.00 (0.43, 9.32)	
O'Malley et al.50	2 of 26	1 of 25	1.2	1.92 (0.19, 19.90)	
Waters et al.14	5 of 33	4 of 33	4.8	1.25 (0.37, 4.25)	
Wu et al. ⁵³	2 of 21	1 of 19	1.3	1.81 (0.18, 18.39)	
Young et al.54	6 of 24	3 of 22	3.7	1.83 (0.52, 6.46)	
Subtotal	18 of 134	12 of 159	13.4	1.66 (0.83, 3.31)	•
Heterogeneity: $\chi^2 = 0.31$,	4 d.f., P = 0.9	$9; I^2 = 0\%$			
Test for overall effect: $Z =$					
CCTs					
Yunos et al.26,55	105 of 760	65 of 773	77-0	1.64 (1.23, 2.20)	
Subtotal	105 of 760	65 of 773	77-0	1.64 (1.23, 2.20)	▼
Heterogeneity: not applic	cable				
Test for overall effect: $Z =$	= 3·33, <i>P</i> < 0·00	01			
Observational/retrospective	studies				
Berger et al.41	1 of 20	0 of 20	0.6	3.00 (0.13, 69.52)	
Shaw et al.27	23 of 2778	5 of 926	9.0	1.53 (0.58, 4.02)	
Subtotal	24 of 2798	5 of 946	9.6	1.63 (0.65, 4.07)	
Heterogeneity: $\chi^2 = 0.16$,	1 d.f., P = 0.6	9; $I^2 = 0\%$		-	
Test for overall effect: $Z =$		•			
Total	147 of 3692	82 of 1878	100-0	1.64 (1.27, 2.13)	*
Heterogeneity: $\chi^2 = 0.47$, 7 d	d.f., $P = 1.00$: f	$^{2} = 0\%$			
Test for overall effect: $Z = 3.7$		_ 0,0			
Test for subgroup differences	•	df P = 1.00· I ² =	0%		0.01 0.1 1 10 10
root for subgroup differences	σ.χ = σ σσ, ε .	u.i., 7 = 1 00, 7 = 1	070		Favours high chloride Favours low chloride

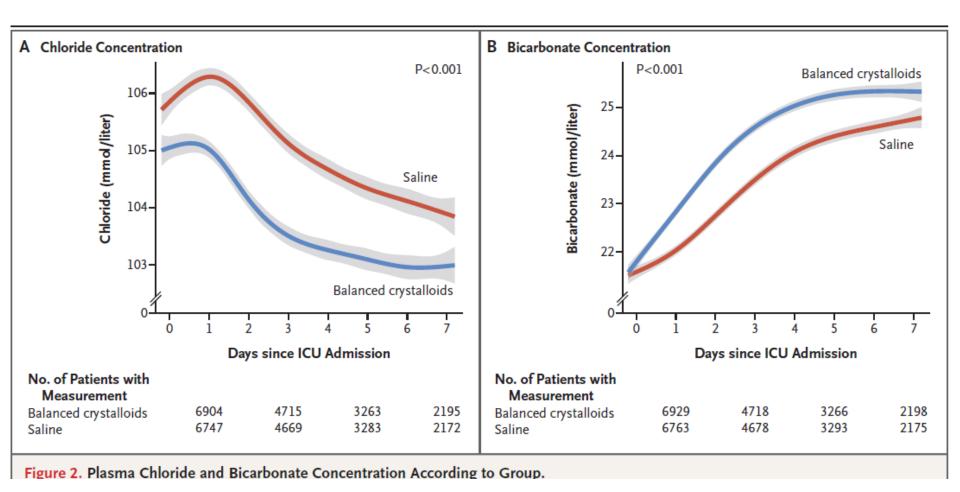
However,

High Cl fluid:

Other

- 1. Metabolic acidosis (RR 2.87)
- 2. Greater serum Cl,
- 3. More Blood T/F
- 4. Longer MV

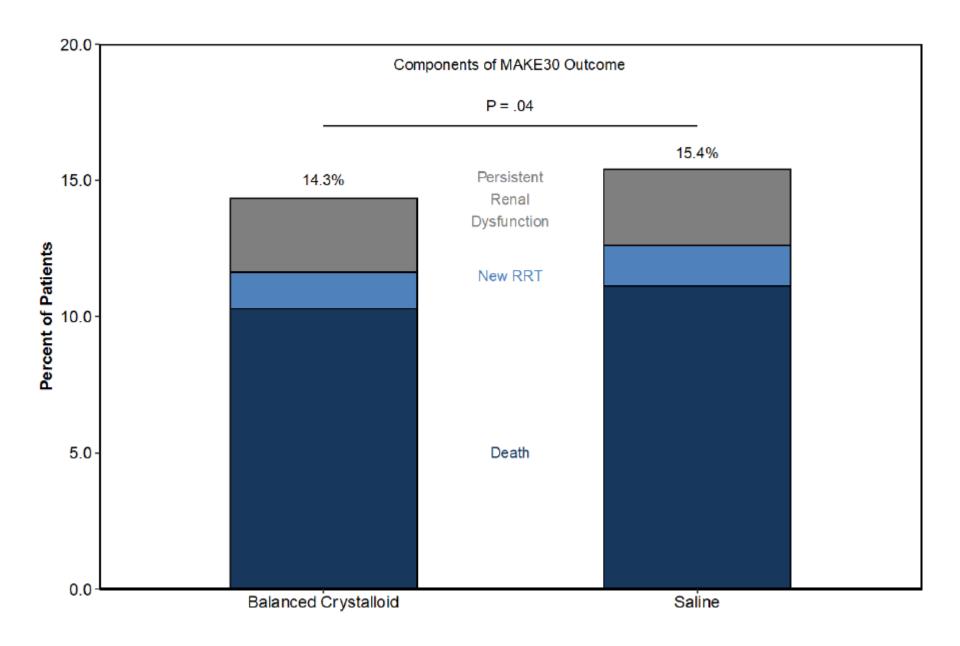
ORIGINAL ARTICLE

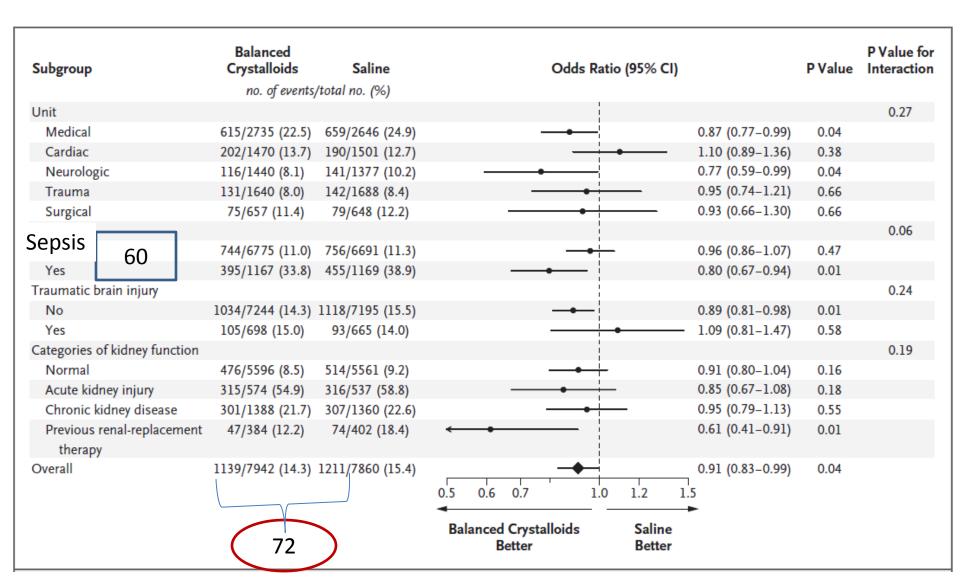

Balanced Crystalloids versus Saline in Critically Ill Adults

Matthew W. Semler, M.D., Wesley H. Self, M.D., M.P.H.,
Jonathan P. Wanderer, M.D., Jesse M. Ehrenfeld, M.D., M.P.H.,
Li Wang, M.S., Daniel W. Byrne, M.S., Joanna L. Stollings, Pharm.D.,
Avinash B. Kumar, M.D., Christopher G. Hughes, M.D.,
Antonio Hernandez, M.D., Oscar D. Guillamondegui, M.D., M.P.H.,
Addison K. May, M.D., Liza Weavind, M.B., B.Ch., Jonathan D. Casey, M.D.,
Edward D. Siew, M.D., Andrew D. Shaw, M.B., Gordon R. Bernard, M.D.,
and Todd W. Rice, M.D., for the SMART Investigators
and the Pragmatic Critical Care Research Group*

Pragmatic, unblinded, Cluster randomized, multiple crossover Bal vs Saline, % ICU's in one Center, >15 000 patients

Outcomes

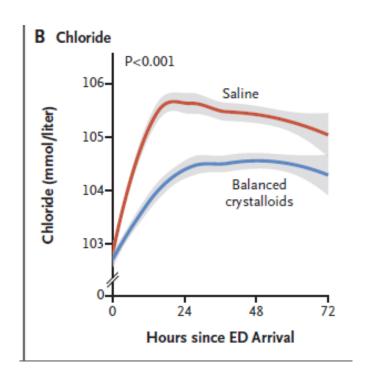

1° - MAKE 30 – Mortality/New RRT/Persistent renal dysfunction
 2° Outcomes and Prespecified subgroup analysis

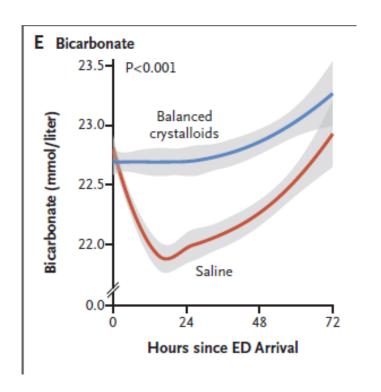


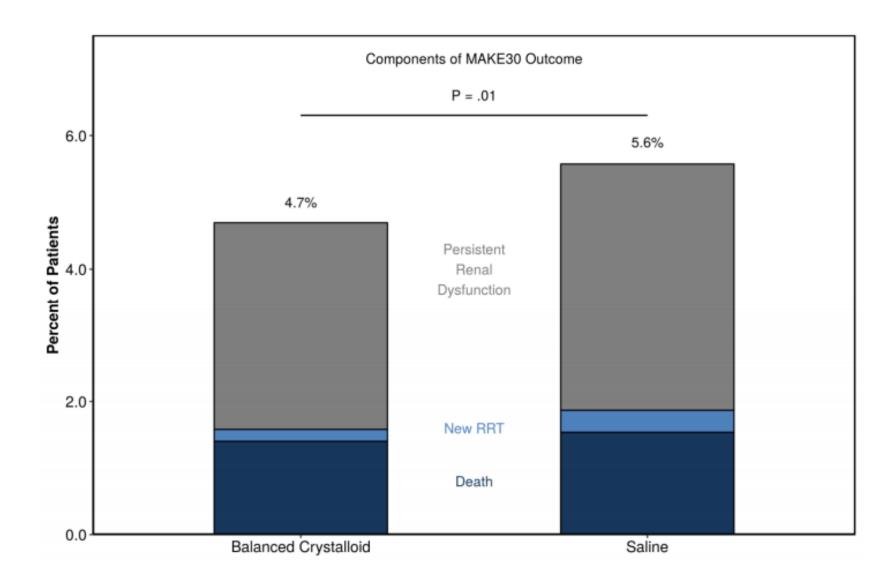
Due to co-ordination with ED and OR — Received same fluid pre-ICU, hence the differences at ICU admission

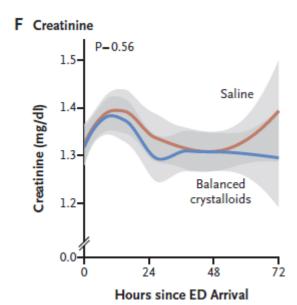
Table 2. Clinical Outcomes.*

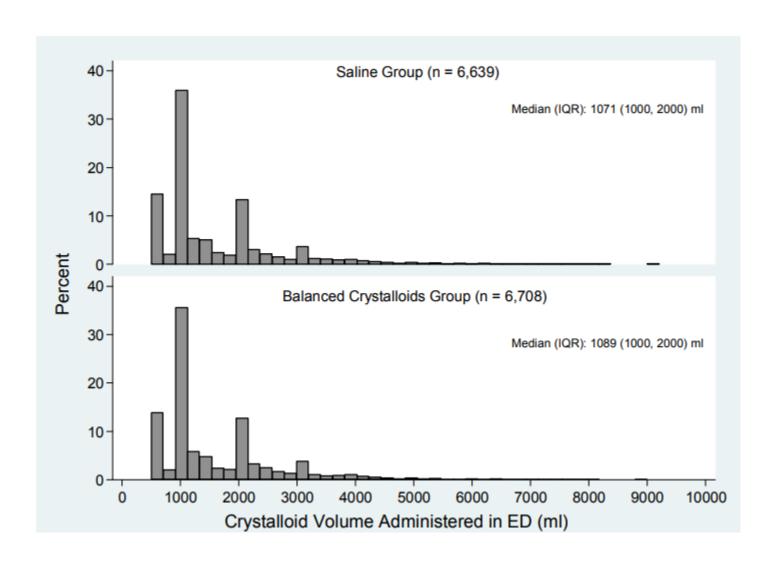
Outcome	Balanced Crystalloids (N=7942)	Saline (N=7860)
Primary outcome		
Major adverse kidney event within 30 days — no. (%)‡	1139 (14.3)	1211 (15.4)
Components of primary outcome		
In-hospital death before 30 days — no. (%)	818 (10.3)	875 (11.1)
Receipt of new renal-replacement therapy — no./total no. (%)∫	189/7558 (2.5)	220/7458 (2.9)
Among survivors	106/6787 (1.6)	117/6657 (1.8)
Final creatinine level ≥200% of baseline — no./total no. (%)∫	487/7558 (6.4)	494/7458 (6.6)






ORIGINAL ARTICLE


Balanced Crystalloids versus Saline in Noncritically Ill Adults


Wesley H. Self, M.D., M.P.H., Matthew W. Semler, M.D.,
Jonathan P. Wanderer, M.D., Li Wang, M.S., Daniel W. Byrne, M.S.,
Sean P. Collins, M.D., Corey M. Slovis, M.D., Christopher J. Lindsell, Ph.D.,
Jesse M. Ehrenfeld, M.D., M.P.H., Edward D. Siew, M.D.,
Andrew D. Shaw, M.B., Gordon R. Bernard, M.D.,
and Todd W. Rice, M.D., for the SALT-ED Investigators*

RESEARCH ARTICLE

Open Access

The prognostic importance of duration of AKI: a systematic review and meta-analysis

Swati Mehta^{1*}, Kinsuk Chauhan², Achint Patel², Shanti Patel², Rachel Pinotti², Girish N. Nadkarni², Chirag R. Parikh³ and Steven G. Coca²

 Duration of AKI was dependent on recovery sCr to within 25-50% of baseline sCr

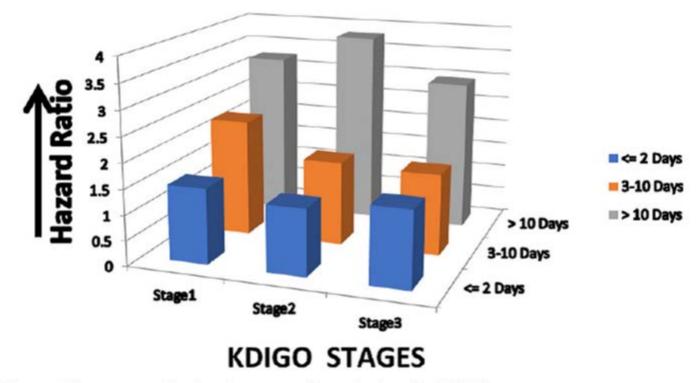


Fig. 5 Risk for incident CKD stage 3 increases with duration even after adjusting for KDIGO stage

Mehta S, Chauhan K, Patel A, Patel S, Pinotti R, Nadkarni GN, et al. The prognostic importance of duration of AKI: a systematic review and meta-analysis. BMC Nephrol [Internet]. 2018 Apr 19;19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907696/

Conclusion

 Duration of AKI is independently associated with long-term mortality and may provide additional prognostic information over and above magnitude of serum creatinine alone. Thus, AKI duration can be considered as a prognostic factor for long-term mortality and other cardiovascular outcomes and can be used as an endpoint in intervention trials to prevent or treat AKI.

Mehta S, Chauhan K, Patel A, Patel S, Pinotti R, Nadkarni GN, et al. The prognostic importance of duration of AKI: a systematic review and meta-analysis. BMC Nephrol [Internet]. 2018 Apr 19;19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907696/

What about SPLIT

eTable 7. Cause-specific in hospital mortality within the 90-day follow-up period						
	Buffered crystalloid group	Saline group	Relative Risk (95% CI)	P value		
Categories – no. / to	tal no. (%)					
	3/1152	2/1110	1.45			
Bleeding	(0.3)	(0.2)	(0.24 to 8.63)	1.00		
	14/1152		0.67			
Cardiac	(1.2)	20/1110 (1.8)	(0.34 to 1.33)	0.30		
	32/1152		0.79			
Cerebral	(2.8)	39/1110 (3.5)	(0.5 to 1.25)	0.34		
	30/1152		1.26			
Sepsis	(2.6)	23/1110 (2.1)	(0.73 to 2.15)	0.41		
	8/1152	11/1110	0.7			
Other	(0.7)	(1)	(0.28 to 1.74)	0.50		
Total	87/1152	95/1110				

1% absolute mortality reduction – obviously not significant

8.6%

7.6%

Total

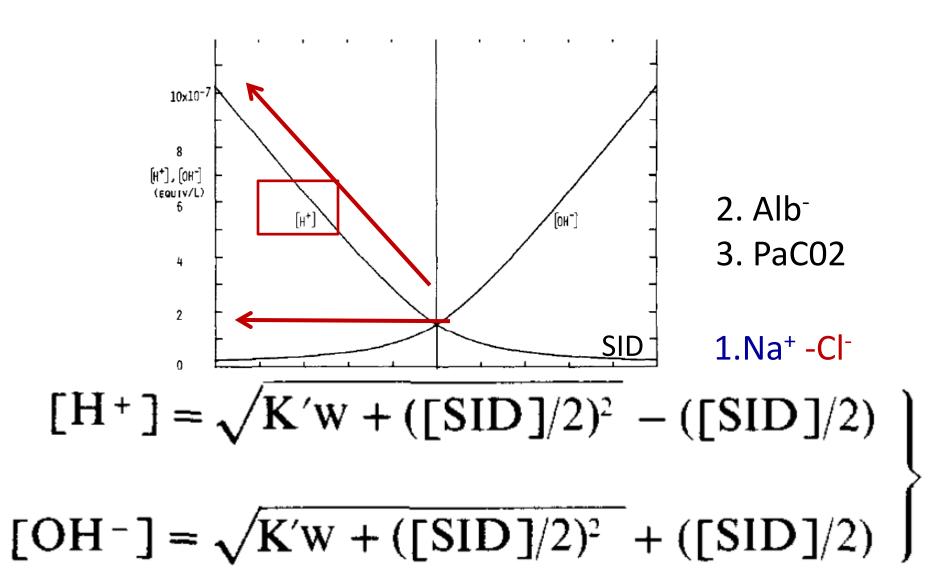
dissolved CO₂, H₂CO₃, HCO₅, and CO₅². Our three laws permit us to write eight simultaneous equations involving these components:

Water dissociation equilibrium: $[H^+] \times [OH^-] = K'W$

Weak acid dissociation equilibrium: $[H^+] \times [A^-] = K_A \times [HA]$

Weak acid conservation of mass: $[HA] + [A^-] = [A_{TOT}]$

 CO_2 solution equilibrium: $[CO_2 (dslvd)] = S_{CO_2} \times P_{CO_2}$


Carbonic acid equilibrium: $[H_2CO_3] = S_{H_2CO_3} \times P_{CO_2}$

Bicarbonate equilibrium: $[H^+] \times [HCO_3^+] = K_C \times P_{CO_2}$

Carbonate equilibrium: $[H^+] \times [CO_3^2] = K_3 \times [HCO_3^-]$

Electrical neutrality: $[S.I.D.] + [H^+] - [OH^-] - [A^-] - [HCO_3^2] - [CO_3^2] = 0$

What does a change in Cl⁻ do?

SMART

Table S11. Indications for new renal replacement therapy.

	Balanced	Saline	
Indications for new RRT among patients who received new RRT, No. (%)	(n = 189)	(n = 220)	P value
Oliguria	144 (76.2)	180 (81.8)	0.16
Hyperkalemia with plasma potassium > 6.5 mEq/L	21 (11.1)	27 (12.3)	0.72
Acidemia with pH < 7.20	56 (29.6)	64 (29.1)	0.91
Blood urea nitrogen > 70 mg/dL	82 (43.4)	106 (48.2)	0.33
Plasma creatinine > 3.39 mg/dL	111 (58.7)	135 (61.4)	0.59
Organ edema	58 (30.7)	66 (30.0)	0.88
Other renal failure-related indication	19 (10.1)	21 (9.5)	0.86
Other non-renal failure-related indication	42 (22.2)	54 (24.5)	0.58